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Abstract
Decompositions of the unitary group U(n) are useful tools in quantum
information theory as they allow one to decompose unitary evolutions into
local evolutions and evolutions causing entanglement. Several recursive
decompositions have been proposed in the literature to express unitary operators
as products of simple operators with properties relevant in entanglement
dynamics. In this paper, using the concept of grading of a Lie algebra, we
cast these decompositions in a unifying scheme and show how new recursive
decompositions can be obtained. In particular, we propose a new recursive
decomposition of the unitary operator on N qubits, and give a numerical
example.

PACS numbers: 03.65.−w, 02.20.Tw, 03.65.Ud

1. Introduction

Decompositions of the unitary Lie group U(n) serve to factorize any element Xf ∈ U(n) as a
product Xf = X1X2 . . . Xm, where X1, X2, . . . , Xm are (elementary) factors in U(n). There
are several reasons to study such decompositions for unitary evolutions in quantum mechanics.
They allow one to analyze the dynamics of a quantum system in terms of simpler, possibly
meaningful, factors. In particular, for multipartite systems they allow the identification of the
local and entangling parts of a given evolution. In this context one can study entanglement
dynamics [1, 2, 11]. From a more practical point of view, they allow one to decompose the
task of designing a given evolution, such as a quantum gate, into simpler, readily available
dynamics (cf, e.g., [8]). In particular, in multipartite systems few entangling evolutions are
typically available. Lie group decompositions are also useful in control problems [3], in
the solution of some algebraic problems of interest in quantum information [9] and in the
design of the quantum circuits [12, 13]. For these reasons several decompositions have been
introduced in recent years [1, 2, 4, 5, 7]. In [1, 2], a decomposition called the concurrence
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canonical decomposition (CCD) was studied in the context of entanglement theory. The CCD
is a way to decompose every unitary evolution on N qubits into a part that does not modify
the concurrence on the N qubits, and a part that does. It is a Cartan decomposition in that it
corresponds to a symmetric space of SU(2N) [6]. In [4], the CCD was further studied and
generalized to multipartite systems of arbitrary dimensions. The resulting decomposition
was called an odd–even decomposition (OED). The OED is a decomposition of unitary
evolutions on multipartite systems constructed in terms of decompositions on the single
subsystems. Recursive decompositions such as the ones in [5] and [7] recursively apply the
Cartan decomposition theorem in order to decompose the factors into simpler ones.

The present paper is devoted to recursive decompositions. Using the relation between
Cartan decompositions of Lie algebras and Lie algebra gradings, we show that the recursive
decompositions of [5] and [7] are a special case of a general scheme from which several other
recursive decompositions can be obtained.

The paper is organized as follows. Most of the content of section 2 is background
material concerning the basic concepts of Cartan decompositions of Lie groups and algebras,
with particular emphasis on decompositions of U(n). We also describe the main ingredients
of the CCD decomposition of [1] and [2]; the OED decomposition of [4]; and the recursive
decompositions of Khaneja and Glaser [7], and D’Alessandro and Romano [5]. One extension
of the procedure used for the OED decomposition is presented in theorem 2.1. In section 3,
we describe gradings of Lie algebras and establish a link between gradings and recursive
decompositions. This gives a general method to develop recursive decompositions of U(n).
We show in section 4 how the recursive decompositions of [5] and [7] are special cases of
this general procedure and how new recursive decompositions can be obtained. In section 5,
we give a numerical example illustrating the calculation of the recursive decompositions
described in section 4. Some concluding remarks are presented in section 6.

2. Cartan decompositions of the unitary group

2.1. Cartan decompositions of a Lie algebra

A Cartan decomposition of a semisimple Lie algebra L is a vector space decomposition

L = K ⊕ P, (1)

where the subspaces K and P satisfy the commutation relations

[K,K] ⊆ K, [K,P] ⊆ P, [P,P] ⊆ K.

The pair (K,P) is called a Cartan pair of L. In particular, K is closed under the Lie bracket
and is therefore a Lie subalgebra of L. A Cartan decomposition of a Lie algebra L induces
a decomposition of the connected Lie group associated with L, which we denote by eL. In
particular, every element X of eL can be written as

X = KP, (2)

where K ∈ eK and P is the exponential of an element in P . Since [P,P] ⊆ K, any
Lie subalgebra contained in P is necessarily Abelian. A maximal Abelian subalgebra H
contained in P is called a Cartan subalgebra, and the common dimension of all the maximal
Abelian subalgebras H is called the rank of the decomposition. Indeed, although the Cartan
subalgebra is not unique, it may be shown that two Cartan subalgebras H and H1 are conjugate
via an element of eK. This means that there exists S ∈ eK such that H = AdS(H1). Here AdS

denotes the adjoint map defined as AdS(H) := SHS† for H ∈ L.
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Let H be a Cartan subalgebra of L. One can prove that

P =
⋃
S∈eK

AdS(H)

and therefore

exp(P) =
⋃
S∈eK

AdS(e
H).

It follows that P in (2) has the form P = SAS†, with S ∈ eK and A ∈ eH. Hence, from (2),
each X ∈ eL can be written as

X = K1AK2, (3)

where K1,K2 ∈ eK and A ∈ eH. This decomposition is known as the KAK decomposition
of the Lie group eL.

Cartan classified all the Cartan decompositions of the classical Lie algebras [6]. In
particular, up to conjugacy, there exist three types of Cartan decomposition of the special
unitary Lie algebra su(n), the Lie algebra of skew-Hermitian matrices with zero trace. The
decompositions are classified as AI, AII and AIII.

A decomposition of type AI is the Cartan decomposition of su(n) into purely real and
purely imaginary matrices, i.e.,

su(n) = so(n) ⊕ so(n)⊥. (4)

The orthogonality is given by the inner product 〈A,B〉 = tr(AB†) where A,B ∈ su(n).
The diagonal matrices in so(n)⊥ span a maximal Abelian subalgebra, so the rank of the
decomposition is n − 1.

A decomposition of type AII is of the form

su(2n) = sp(n) ⊕ sp(n)⊥, (5)

where sp(n) is the Lie algebra of symplectic matrices, namely the subalgebra of su(2n) of
matrices A satisfying

AJ + JAT = 0,

in which J is the 2n × 2n matrix

J :=
(

0 1n

−1n 0

)
.

Here and in the rest of this paper, we denote by 1n the n × n identity matrix. The rank of the
decomposition of type AII is again n − 1.

A decomposition of type AIII is defined in terms of two positive integers p and q with
p + q = n. The decomposition is

su(n) := K ⊕ P, (6)

where K is spanned by block diagonal matrices

F :=
(

Xp×p 0
0 Yq×q

)
, (7)

with Xp×p and Yq×q skew-Hermitian and tr(Xp×p) + tr(Yq×q) = 0. The rank of this
decomposition is min{p, q}.

Each Cartan decomposition of su(n) is conjugate to one of the decompositions of type
AI, AII and AIII. In other words, if su(n) = K ⊕ P is a Cartan decomposition of su(n), there
exists a unitary matrix T such that su(n) = TKT † ⊕ TPT † is in one of the forms AI, AII

3
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and AIII. These decompositions can be expressed in forms of interest in various contexts, for
example with matrices expressed as tensor products of operators on single subsystems in a
multipartite quantum system.

In the following, we shall find it convenient to extend these decompositions to
decompositions of u(n) = su(n) ⊕ span{i1n}, the Lie algebra of U(n). Consider a Cartan
decomposition of the special unitary Lie algebra su(n) of type either AI or AII. Since the
identity matrix 1n commutes with each element of su(n), the Cartan decompositions of su(n)

of types AI (4) and AII (5) can be naturally extended to decompositions of u(n) by replacing P
with P ⊕ span{i1n}. We also denote these decompositions of types AI and AII. In both Cartan
decompositions, the rank becomes n. For decompositions of type AIII, we find it convenient
to include span{i1n} in the Lie algebra part and replace K with K ⊕ span{i1n}, so as to lift the
restriction tr(Xp×p) + tr(Yq×q) = 0 in (7).

2.2. Cartan decompositions for multipartite quantum systems: CCD and OED

For a multipartite quantum system with N subsystems of dimensions n1, n2, . . . , nN , the set
of possible Hamiltonians is the Jordan algebra iu(n1n2 . . . nN) of n1n2 . . . nN × n1n2 . . . nN

Hermitian matrices. The Lie algebra associated with the dynamics is u(n1n2 . . . nN). Cartan
decompositions of u(n1n2 . . . nN) result in decompositions of the corresponding unitary group
of quantum evolutions U(n1n2 . . . nN).

The concurrence canonical decomposition (CCD) was studied in [1, 2] as a means of
decomposing the dynamics of N two-level systems, into one factor which preserves the
concurrence of the density matrix and one factor which does not. It is constructed as follows:

Recall that the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

together with the 2 × 2 identity matrix 12 form a basis of the Jordan algebra iu(2). An
orthogonal basis of u(2N) is given by the tensor products of the form iσ1 ⊗ · · · ⊗ σN , where
σj = σx,y,z or σj = 12 for all 1 � j � N . Let us denote by iIo and iIe the respective
subspaces of u(2N) spanned by elements of the form iσ1 ⊗ · · · ⊗ σN with an odd or even
number of factors σj given by Pauli matrices, and the remaining factors equal to the identity
12. The CCD is the decomposition

u(2N) = iIo ⊕ iIe (8)

of u(2N). The Lie subgroup eiIo associated with the subalgebra iIo is a subgroup of U(2N)

containing all the local transformations. For each X ∈ U(2N) the decomposition (2) holds with
K ∈ eiIo and P = eR with R ∈ iIe. The factor K and in particular, any local transformation,
does not modify the N-qubit concurrence [1]. Such a decomposition is of type AI if N is even,
and of type AII if N is odd.

The odd–even decomposition (OED) was introduced in [4] as a generalization of the CCD
to multipartite systems of arbitrary dimensions. The main idea is to construct a decomposition
for the whole Lie algebra u(n1n2 . . . nN) by combining decompositions for the Lie algebras
associated with the single subsystems u(nj ), j = 1, . . . , N . This is based on the following
observation for the CCD. When writing

u(2) = span{iσx, iσy, iσz} ⊕ span{i1n},
we perform a (trivial) AII decomposition of u(2), since su(2) = sp(1). In the CCD, we collect
(modulo i) tensor products with an odd number of elements in the Lie algebra in Io and tensor
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products with an even number of elements in Ie. The OED [4] is obtained by applying this
idea to general Lie algebras u(nj ), j = 1, . . . , N . By writing

u(nj ) = K ⊕ P,

with K conjugate to so(nj ) or sp(
nj

2 ), and P = K⊥, we obtain a decomposition of type AI or
AII, respectively. Denoting by σ a generic element of iK and by S a generic element of iP ,
we define Ĩo and Ĩe to be the respective vector space spanned by tensor products of matrices
of the type σ and S with an odd or even number of σ terms. The decomposition

u(n1n2 . . . nN) = iĨo ⊕ iĨe (9)

is a Cartan decomposition called the OED. The subspace iĨo is the Lie subalgebra. This is
a generalization of the CCD not only because it applies to systems of arbitrary dimensions,
but also because, for every subsystem, we can perform different decompositions of type AI
or AII. The CCD is obtained as a special case of the OED (9) when all the subsystems are of
dimension 2 and a decomposition of type AII is performed on each subsystem. Generalizing
the result on the nature of the CCD decomposition, the OED decomposition is of type AII if
an odd number of AII decompositions are performed. Otherwise, it is of type AI. As the CCD
is related to the concurrence on N qubits, the OED has the same meaning for the generalized
concurrences studied by Uhlmann in [10].

We refer to [3] for a detailed discussion of the CCD and OED decompositions, and to [6]
for the mathematical foundations of the Cartan decompositions.

Remark 2.1. The procedure described for the OED allows one great flexibility in the
construction of various Cartan decompositions. Not only is one free to choose decompositions
of type AI or AII for each subsystem, but one can also choose among the different types
of conjugate AI or AII decompositions for each subsystem. This gives a method for the
construction of an infinite number of decompositions in terms of tensor product matrices, even
for the simplest case of N qubits. This flexibility is crucial in the construction of gradings
for the Lie algebra u(n1n2 . . . nN), and of recursive decompositions, as we shall see in the
following two sections.

We observe here that the procedure followed to construct the OED decomposition,
applying decompositions of type AI and AII, can be used with few changes to obtain an overall
decomposition starting from decompositions of type AIII. More specifically, we perform
decompositions of type AIII on each subsystem and collect in the respective subspaces iĨo

and iĨe the linear combinations of tensor products with an odd or even number of factors in
the subalgebra part (modulo i). We again consider the decomposition of u(n1n2 . . . nN) in (9)
but with iĨo and iĨe defined in terms of type AIII decompositions.

Theorem 2.1. Consider the decomposition (9) obtained with decompositions of type AIII as
described above. This is a type AIII decomposition of the overall Lie algebra u(n1n2 . . . nN).
If N is odd, then iĨo is the Lie subalgebra in the decomposition. If N is even, then iĨe is the
Lie subalgebra in the decomposition.

Proof. The proof is by induction on N. If N = 1 the statement is obvious. Assume the
statement is true for N − 1, and assume to be concrete that N is odd (exactly the same proof
holds for N even). Denote by Ĩj

o and Ĩj
e the respective spaces of matrices in iu(n1n2 . . . nj )

that are linear combinations of an odd or even number of matrices in iK, where K is the
subalgebra of the AIII decomposition (possibly different for the different subsystems). Let us

5
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denote by K the subalgebra of (block diagonal) matrices of the AIII decomposition on the last
subsystem and by P its orthogonal complement. We have

ĨN
o = (

ĨN−1
e ⊗ iK

) ⊕ (
ĨN−1

o ⊗ iP
)
, ĨN

e = (
ĨN−1

e ⊗ iP
) ⊕ (

ĨN−1
o ⊗ iK

)
.

By the inductive assumption, there exists a unitary matrix T in U(n1n2 . . . nN−1) such that
T †ĨN−1

e T is the same as the space of n1n2 . . . nN−1 ×n1n2 . . . nN−1 Hermitian block-diagonal
matrices, and T †ĨN−1

o T is the same as the space of n1n2 . . . nN−1 × n1n2 . . . nN−1 Hermitian
block-antidiagonal matrices. Let T1 = T † ⊗ 1nN

, then the subspace T
†

1 ĨN
o T1 is spanned by all

the matrices of the form(
A 0
0 B

)
⊗

(
C 0
0 D

)
and

(
0 F

−F † 0

)
⊗

(
0 G

−G† 0

)
.

The sizes of the matrices A,B,C,D,F and G depend on the indices p, q of the two
decompositions. Using corollary 4.3.10 of [15] one can construct a permutation similarity
matrix T2 so that the subspace (T1T2)

†ĨN
o (T1T2) is spanned by all the matrices of the form

T
†

2

(
A 0
0 B

)
⊗

(
C 0
0 D

)
T2 =

⎛
⎜⎜⎝

C ⊗ A 0 0 0
0 D ⊗ A 0 0
0 0 C ⊗ B 0
0 0 0 D ⊗ B

⎞
⎟⎟⎠ ,

and by all the matrices of the form

T
†

2

(
0 F

−F † 0

)
⊗

(
0 G

−G† 0

)
T2 =

⎛
⎜⎜⎝

0 0 0 G ⊗ F

0 0 −G† ⊗ F 0
0 −G ⊗ F † 0 0

G† ⊗ F † 0 0 0

⎞
⎟⎟⎠ .

Finally, the conjugation P → T
†

3 PT3, where T3 has the form

T3 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎟⎠

with identity matrices 1 of appropriate dimensions, transforms the subspace (T1T2)
†ĨN

o (T1T2)

into the standard block diagonal form (7) of the type AIII decomposition. Therefore the
subspace R†ĨN

o R is of form (7) where R := T1T2T3. It can be verified that R also transforms
ĨN

e into the standard block anti-diagonal form of the AIII decomposition. �

Remark 2.2. The indices p and q of the resulting AIII decompositions of theorem 2.1 are
p = n1n2 . . . nl−1plnl+1 . . . nN and q = n1n2 . . . nl−1qlnl+1 . . . nN , where l may refer to any
of the subsystems l = 1, . . . , N, and pl and ql are the indices of the AIII decomposition of the
lth system. The theorem also indicates the inductive construction of the matrix conjugation
which maps the AIII decomposition into the standard form. This is of interest for practical
computation of the decomposition, as most of the existing numerical algorithms refer to
the standard form (6), (7). Note that decompositions constructed by mixing AI or AII
decompositions with AIII type decompositions do not give rise to Cartan decompositions.

6
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2.3. Recursive decompositions

A recursive procedure to decompose unitary evolutions into local and entangling factors for
the case of N qubits was introduced by N Khaneja and S Glaser in [7]. One starts with the
Cartan decomposition

su(2N) = K ⊕ P (10)

of type AIII, where

K = span{12 ⊗ A, σz ⊗ B | A ∈ su(2N−1), B ∈ u(2N−1)}, (11)

P = span{σx,y ⊗ C | C ∈ u(2N−1)}. (12)

This allows one to write each special unitary evolution X ∈ SU(2N) as X = K1AK2, where
K1,K2 ∈ eK and A ∈ eA, with A the Cartan subalgebra contained in P . The subalgebra K is
the direct sum of span{iσz ⊗ 12N−1} and two copies of su(2N−1) which form a semisimple Lie
algebra. Thus we can again apply Cartan’s theorem to further factorize K1,K2 ∈ eK. This is
obtained through the decomposition K = K′ ⊕ P ′, with

K′ = span{12 ⊗ A | A ∈ su(2N−1)}, (13)

P ′ = span{σz ⊗ B | B ∈ u(2N−1)}, (14)

to decompose each K1,K2 ∈ eK, thereby refining the decomposition of X. The key observation
is that K′ and su(2N−1) are isomorphic, hence the procedure can be repeated by replacing N
with N − 1.

Another recursive procedure to decompose unitary evolutions was introduced by D
D’Alessandro and R Romano in [5]. Such a decomposition applies to bipartite systems
of arbitrary dimensions.1 In the first step, one starts with an OED decomposition using AI
types of decomposition on both subsystems, so that u(n1n2) is decomposed as in (9), that is,
u(n1n2) = iĨo ⊕ iĨe, where

Ĩo := span{σ ⊗ S, S ⊗ σ } (15)

conjugate to so(n1n2). As so(n1n2) is also semisimple, one then introduces a Cartan
decomposition of Ĩo by separating block diagonal and anti-diagonal elements (for two arbitrary
indices) in the factors of the basis of Ĩo. In particular, one writes

iĨo = K ⊕ P,

where

K := span{iσD ⊗ SD, iSD ⊗ σD, iσA ⊗ SA, iSA ⊗ σA}
and

P := span{iσD ⊗ SA, iSD ⊗ σA, iσA ⊗ SD, iSA ⊗ σD},
the superscripts A and D standing for block-antidiagonal and block-diagonal respectively. The
Lie algebra K is isomorphic to the semisimple direct sum so(r) ⊕ so(f ) with r + f = n1n2.
One decomposes K as

K = K′ ⊕ P ′,
with K′ := span{iσD ⊗ SD, iSD ⊗ σD} and P ′ := span{iσA ⊗ SA, iSA ⊗ σA}. The Lie
subalgebra K′ is isomorphic to the direct sum of four subalgebras so(r1) ⊕ so(r2) ⊕ so(r3) ⊕
so(r4). Each of the summands is spanned by tensor products of the type in (15) with matrices
σ and S, where only one sub-block is different from zero. One then iterates the procedure.
We refer to [5] for details.
1 Extensions to the general multipartite case can be obtained at the price of some notational complexity.
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3. Lie algebra grading and recursive Cartan decompositions

In this section, we give the definition of a grading of a Lie algebra and relate a recursive Lie
algebra decomposition to a grading. Our goal is to cast recursive decompositions of the unitary
group into a general framework. In fact, in the following section we will show that known
recursive decompositions, such as those of Khaneja and Glaser [7] and D’Alessandro and
Romano [5] reviewed in the previous section, can be obtained from an appropriate grading.
We shall also see in the following section how new decompositions can be generated with the
procedure described here.

Definition 3.1. Let L be a Lie algebra and let M be an index set which has the structure of an
additive semigroup. A direct sum decomposition

L =
⊕
i∈M

Li

is called an M-grading of L if the subspaces Li and Lj satisfy the commutation relation
[Li ,Lj ] ⊆ Li+j for all i, j ∈ M .

In the special case where M is a monoid, that is, a semigroup with an identity element 0, the
subspace L0 is a Lie subalgebra, since it satisfies the commutation relation [L0,L0] ⊆ L0.

Example 3.1. Consider the special linear Lie algebra sl(2) of 2×2 traceless matrices spanned
by

x =
(

0 1
0 0

)
, h =

(
1 0
0 −1

)
, y =

(
0 0
1 0

)
,

with the commutation relations [h, x] = 2x, [x, y] = h and [h, y] = −2y. Let M =
{−1, 0, 1}. Then M becomes a monoid with addition given by the following table:

(M, +) 0 −1 1
0 0 −1 1

−1 −1 0 0
1 1 0 0

The choice of L−1 = span{x},L0 = span{h} and L1 = span{y} makes sl(2) into an M-graded
Lie algebra.

A fundamental observation for what follows is that a Cartan decomposition (1) defines a
Z2-grading of the Lie algebra L with K := L0 and P := L1.

As we have seen above, for a Lie algebra L, there are many Cartan decompositions. The
following proposition shows that p Cartan decompositions give a Z

p

2 -grading for general p.

Proposition 3.1. Consider p Cartan decompositions L = Lj

0 ⊕ Lj

1 for j = 1, . . . , p. Define

Lk1k2...kp
:=

⋂
j=1,...,p

Lj

kj
(16)

for kj ∈ Z2. Then the vector space decomposition

L =
⊕

Lk1k2...kp
(17)

forms a Z
p

2 -grading of L.

Proof. The proof is by induction on p. The claim is true for p = 1. Assume the claim is
true for p − 1. Let A ∈ Lk1k2...kp

and B ∈ Ll1l2...lp where ki, li ∈ Z2 with 1 � i � p. Then

8
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it follows that A ∈ Lk1k2...kp−1, A ∈ Lkp
, B ∈ Ll1l2...lp−1 , and B ∈ Llp . Since L is both Z

p−1
2 −

graded and Z2− graded, we have

[A,B] ∈ L(k1+l1)(k2+l2)...(kp−1+lp−1) and [A,B] ∈ L(kp+lp).

This implies that

[A,B] ∈ L(k1+l1)(k2+l2)...(kp−1+lp−1) ∩ L(kp+lp) = L(k1+l1)(k2+l2)...(kp+lp)

and therefore

[Lk1k2...kp
,Ll1l2...lp ] ⊆ L(k1+l1)(k2+l2)...(kp+lp).

In conclusion, (17) is a Z
p

2 -grading of L. �

Thus a Cartan decomposition of a Lie algebra is a Z2-grading. A combination of p
Cartan decompositions gives a Z

p

2 -grading. In order to cast a recursive decomposition in the
framework of Lie algebra gradings, we give the following definition.

Definition 3.2. A recursive decomposition of a Lie algebra L consists of two sequences of
subspaces of L,

S0 := {L0,L00,L000, . . . ,L0p } and S1 := {L1,L01,L001, . . . ,L0p−11},
both of length p, such that

L0j = L0j+1 ⊕ L0j 1

is a Cartan decomposition of L0j for each j = 0, . . . , p − 1. That is,

[L0j+1 ,L0j+1 ] ⊆ L0j+1 , [L0j+1 ,L0j 1] ⊆ L0j 1, [L0j 1,L0j 1] ⊆ L0j+1 .

Here we have set L00 := L and L001 := L1.

Once one has a recursive decomposition of a Lie algebra L, in the sense of the above definition,
one can obtain a decomposition of the connected Lie group eL associated with L. This is
obtained by repeated use of the Cartan decomposition theorem. Assume that L is semisimple,
and that all of the L0j , j = 1, . . . , p − 1, are also semisimple. One first writes each element
X of eL as

X = K1AK2,

where K1 and K2 are in eL0 , while A belongs to the connected Lie group corresponding to a
maximal Abelian subalgebra contained in L1. Then one applies the Cartan decomposition of
L0 in order to decompose K1 and K2, and so on. The resulting decomposition contains several
factors.

A Z
p

2 -grading of L induces a recursive decomposition of L of length p.

Proposition 3.2. Consider a Z
p

2 -grading L = ⊕
Rj1,...,jp

of L. Then the sequences S0 :=
{L0k } and S1 := {L0k−11}, defined by

L0k :=
⊕

R0k ,jk+1,...,jp
and L0k−11 :=

⊕
R0k−11,jk+1,...,jp

for k = 1, . . . , p, yield a recursive decomposition of L of length p.

Remark 3.1. Given a recursive decomposition sequence as in definition 3.2, the semisimplicity
of the subalgebras L0k (for k = 0, . . . , p) has to be verified independently. Even in the
main case considered here, where the recursive decomposition sequence is obtained from
a Lie algebra grading by means of combined Cartan decompositions as in proposition 3.1,
semisimplicity is not guaranteed. For example, by combining type AI and AII decompositions

9
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of su(4) in the standard basis, one obtains L00 = sp(2) ∩ so(4). This is not semisimple,
having an element which commutes with the whole Lie algebra. If a Lie algebra is the direct
sum of a semisimple Lie algebra and an Abelian ideal, the Cartan decomposition theorem can
be extended in the same fashion as we extended decompositions of su(n) to decompositions
of u(n) in section 2.1.

4. A scheme for recursive decompositions of U(n)

4.1. Special cases

We now show that the recursive decompositions of Khaneja and Glaser [7] and D’Alessandro
and Romano [5], summarized in section 2.3, form a special case of the above procedure. In
particular, they are induced by an appropriate grading.

Let us start with the decomposition of Khaneja and Glaser [7]. We construct a Lie algebra
grading of su(2N) using the prescription of proposition 3.1. Consider p Cartan decompositions

su(2N) = Lj

0 ⊕ Lj

1 (18)

of su(2N) for j = 1, . . . , p, all of type AIII, where L1
0 and L1

1 are respectively equal to L0 and
L1 in (11) and (12) respectively. Now L2

0 and L2
1 are defined in the same way as L1

0 and L1
1,

except for the fact that σx and σz are interchanged.2 Such a decomposition is conjugate to the
standard type AIII decomposition, the conjugation having the form A → T ⊗12N−1AT †⊗12N−1

with T the 2 × 2 matrix which diagonalizes σx . The summands L3
0 and L3

1 are given by

L3
0 = span{A ⊗ 12 ⊗ C,B ⊗ σz ⊗ D | A,B ∈ u(2), C,D ∈ u(2N−2), tr(A ⊗ C) = 0}, (19)

L3
1 = span{E ⊗ σx,y ⊗ F | E ∈ u(2), F ∈ u(2N−2)}. (20)

This decomposition is again conjugate to the standard type AIII decomposition under the
permutation which exchanges the first and second positions. The decomposition L4

0 ⊕ L4
1

is the same as L3
0 ⊕ L3

1, except for the fact that the roles of σx and σz are exchanged. The
summands L5

0 and L5
1 are defined analogously to L3

0 and L3
1, using the third position in place

of the second. The same holds for L6
0 and L6

1, defined as L4
0 and L4

1. In this fashion, one can
define p = 2N −1 decompositions3 and therefore a Z

p

2 -grading of su(2N). The corresponding
pair of sequences giving the recursive decomposition according to proposition 3.2 is

L0,L1, same as in (11), and (12),

L00 = span{12 ⊗ A | A ∈ su(2N−1)},
L01 = span{σz ⊗ B | B ∈ u(2N−1)},
L000 = span{12 ⊗ 12 ⊗ C, 12 ⊗ σz ⊗ D | C ∈ su(2N−2),D ∈ u(2N−2)},
L001 = span{12 ⊗ σx,y ⊗ D | D ∈ u(2N−2)},
...

L02N−3 = span{12N−1 ⊗ F, 12N−2 ⊗ σz ⊗ G | F ∈ su(2),G ∈ u(2)},
L02N−41 = span{12N−2 ⊗ σx,y ⊗ G | G ∈ u(2)},
L02N−2 = span{12N−1 ⊗ F,F ∈ su(2)},
L02N−31 = span{12N−2 ⊗ σz ⊗ G | G ∈ u(2)},
L02N−1 = span{12N−1 ⊗ σz},
L02N−21 = span{12N−1 ⊗ σx,y}.

2 There is nothing special about σx here. One could have chosen σy instead.
3 We stop at p = 2N − 1 because L0p is {0}.

10
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This sequence of subspaces is the one corresponding to the Khaneja–Glaser decomposition.
Note in particular that each Lie subalgebra L0k (for k = 1, . . . , 2N − 1) is either semisimple,
or the sum of a semisimple Lie algebra and an Abelian (in fact one-dimensional) subalgebra of
elements which commute with the whole Lie algebra. Thus the Cartan decomposition theorem
applies in each case (cf remark 3.1).

In order to obtain the recursive decomposition corresponding to the decomposition
of D’Alessandro and Romano [5], one constructs a grading by combining three types of
decomposition:

(1) An OED decomposition with a type AI decomposition on each system;
(2) OED decompositions constructed using type AIII decompositions on each factor as in

theorem 2.1;
(3) Type AIII decompositions in the standard form (separating block diagonal and block

antidiagonal matrices).

In particular, let L1
0 = iĨo and L1

1 = iĨ⊥
o , where Ĩo is defined in (15). The summands L2

0
and L2

1 are the respective subspaces iĨe and iĨo, referred to in theorem 2.1. The summands
L3

0 and L3
1 are the K and P subspaces of a type AIII decomposition in standard coordinates,

with p and q given by p = p1p2 + p1q2 and q = q1p2 + q1q2. Here {p1, q1} and {p2, q2} are
the indices for the type AIII decompositions used for L2

0 and L2
1. The summands L4

0,L4
1,L5

0
and L5

1 are constructed analogously to L2
0,L2

1,L3
0 and L3

1 respectively, with different indices
{p1, q1} and {p2, q2}. The same holds for L6

0,L6
1,L7

0 and L7
1, and so on. Each time, the indices

{p1, q1} and {p2, q2} are changed, differing from the previous ones in order to avoid repetition
of decompositions. With these decompositions, one can define a grading, and therefore a
recursive decomposition. This decomposition corresponds to the one in [5].

4.2. Construction of new recursive decompositions

It follows from the previous discussion that many recursive decompositions of u(n) (or su(n))
and therefore of U(n) (or SU(n)) can be obtained. Once one has a certain number p of Cartan
decompositions, then a Z

p

2 -grading and therefore a recursive decomposition can be obtained.
We have seen that known recursive decompositions are a special case of this general procedure.
Cartan decompositions can be obtained for example by taking one type of decomposition, e.g.,
AI, and then use various conjugations. When dealing with multipartite systems, it is convenient
to have Cartan decompositions given in terms of tensor products of matrices as the CCD and
OED described in subsection 2.2.

As an example we construct a new recursive decomposition of evolutions on N qubits
here. We consider the following 2N decompositions on u(2N).

(1) A CCD decomposition so that L1
0 = iIN

o and L1
1 = iIN

e , where IN
o

(
IN

e

)
is the same as

Io (Ie) in (8) with the superscript N denoting the number of positions considered;
(2) An OED decomposition with all ‘local’ decompositions of type AII except the one on the

Nth term which is of type AI and of the form

u(2) = span{iσz} ⊕ span{i12, iσx, iσy};
For the resulting decomposition, we have

L2
0 = span

{
iIN−1

e ⊗ σz, iIN−1
o ⊗ {σx, σy, 12}

}
,

L2
1 = span

{
iIN−1

o ⊗ σz, iIN−1
e ⊗ {σx, σy, 12}

}
.

(3) Same as in (2) but with σz and σx interchanged to define L3
0 and L3

1;

11
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(4) Same as in (2) but with the Nth position replaced by (N − 1)th position to define L4
0

and L4
1;

(5) Same as in (4) with σx and σz interchanged;
(6) → (2N− 1) . . . and so on moving toward the first position, alternating decompositions

as in (2) and decompositions as in (3);

(2N) Same as in (2) with the first position replacing the Nth one.

Example 4.1. In the case N = 3 we have, with σ denoting any possible Pauli matrix,

L1
0 = span{iσ ⊗ 12 ⊗ 12, i12 ⊗ σ ⊗ 12, i12 ⊗ 12 ⊗ σ, iσ ⊗ σ ⊗ σ },

L1
1 = span{iσ ⊗ σ ⊗ 12, i12 ⊗ σ ⊗ σ, iσ ⊗ 12 ⊗ σ, i12 ⊗ 12 ⊗ 12},

L2
0 = span{iσ ⊗ 12 ⊗ {12, σx, σy}, i12 ⊗ σ ⊗ {12, σx, σy}, iσ ⊗ σ ⊗ σz, i12 ⊗ 12 ⊗ σz},

L2
1 = span{iσ ⊗ σ ⊗ {12, σx, σy}, i12 ⊗ 12 ⊗ {12, σx, σy}, iσ ⊗ 12 ⊗ σz, i12 ⊗ σ ⊗ σz},

L3
0 = span{iσ ⊗ 12 ⊗ {12, σz, σy}, i12 ⊗ σ ⊗ {12, σz, σy}, iσ ⊗ σ ⊗ σx, i12 ⊗ 12 ⊗ σx},

L3
1 = span{iσ ⊗ σ ⊗ {12, σz, σy}, i12 ⊗ 12 ⊗ {12, σz, σy}, iσ ⊗ 12 ⊗ σx, i12 ⊗ σ ⊗ σx},

...

L6
0 = span{i{12, σx, σy} ⊗ σ ⊗ 12, i{12, σx, σy} ⊗ 12 ⊗ σ, iσz ⊗ σ ⊗ σ, iσz ⊗ 12 ⊗ 12},

L6
1 = span{i{12, σx, σy} ⊗ σ ⊗ σ, i{12, σx, σy} ⊗ 12 ⊗ 12, iσz ⊗ σ ⊗ 12, iσz ⊗ 12 ⊗ σ }.

In the general case, with the decompositions u(2N) := Lj

0 ⊕ Lj

1, j = 1, . . . , 2N

one constructs a grading as in proposition 3.1 and a recursive decomposition according
to proposition 3.2. The sequences of subspaces associated with the latter are given, for
k = 0, . . . , N − 1,4

L02k+1 = span
{
iIN−k

o ⊗ 12k

}
,

L02k1 = span
{
iIN−k

e ⊗ σz ⊗ 12k−1

}
,

L02k+2 = span
{
iIN−k−1

o ⊗ 12k+1 , iIN−k−1
e ⊗ σz ⊗ 12k

}
,

L02k+11 = span
{
iIN−k−1

e ⊗ {σx, σy} ⊗ 12k

}
.

In order to apply this recursive decomposition for the recursive decomposition of the Lie group
U(2N) we make the following two remarks.

Remark 4.1. The Lie subalgebra L02k+1 = span
{
iIN−k

o ⊗12N−k

}
, 0 � k � N −1, is isomorphic

to iIN−k
o which is conjugate to so(2N−k) or sp(2N−k−1) according to whether N − k is even

or odd, respectively. Thus, in every case the Lie subalgebra is semisimple. On the other hand,
the Lie subalgebra L02k = span

{
iIN−k

o ⊗ 12k , iIN−k
e ⊗ σz ⊗ 12k−1

}
is isomorphic to u(2N−k),

and the isomorphism is given by the map

A ⊗ 12k �−→ A, B ⊗ σz ⊗ 12k−1 �−→ B, (21)

where A ∈ iIN−k
o and B ∈ iIN−k

e . This is the direct sum of a semisimple Lie algebra and a
one-dimensional subspace whose elements all commute with the elements of the Lie algebra.
In all cases, the Cartan decomposition theorem applies.

4 If the factors on the left occupy all the N positions in the tensor products, the factors on the right do not appear.
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Remark 4.2. In applying Cartan theorem to obtain a KAK decomposition as in (3) we need
to identify the rank and a Cartan subalgebra at each step. The decomposition

L02k = L02k+1 ⊕ L02k1,

with k = 0, . . . , N −1 is a decomposition of type AI or AII (modulo the isomorphism in (21))
of u(2N−k), according to whether N − k is even or odd, respectively. In the AI case the rank
is 2N−k . A maximal Abelian subalgebra is spanned by the subspace

HAI := span
{
iH N−k

2
⊗ σz ⊗ 12k−1

}
.

Here we have used the following notation,

H := span{σx ⊗ σx, σy ⊗ σy, σz ⊗ σz, 12 ⊗ 12}, (22)

and Hl denotes the set obtained by tensor products of l elements of H, that is, Hl =
H ⊗ · · · ⊗ H, l times.5 In the odd, AII, case, the rank is 2N−k−1. A Cartan subalgebra in
this case is given by

HAII := span
{
iH N−k−1

2
⊗ 12 ⊗ σz ⊗ 12k−1

}
.

The decomposition

L02k+1 = L02k+2 ⊕ L02k+11,

with k = 0, . . . , N − 1, is a decomposition of so(2N−k) or sp(2N−k−1) according to whether
N − k is even or odd. In the first case, it is a decomposition of type DIII (we refer to [6]
for decompositions of Lie algebras different from u(n)) which has rank 2N−k−2. The Cartan
subalgebra can be taken equal to

HDIII := span
{
iH N−k−2

2
⊗ 12 ⊗ σx ⊗ 12k

}
.

In the second case, it is a decomposition of type CI and the associated rank is 2N−k−1. The
Cartan subalgebra can be taken equal to

HCI := span
{
iH N−k−1

2
⊗ σx ⊗ 12k

}
.

5. An example of computation

In this section, we use an example to discuss some of the computational issues arising in
recursive decompositions. In particular, we focus on the application of the recursive procedure
described in the previous section to a generalized SWAP operator Xsw ∈ U(8). In the tensor
product basis, the action of Xsw is defined by

Xsw : |i〉 ⊗ |j 〉 ⊗ |k〉 �−→ |j 〉 ⊗ |k〉 ⊗ |i〉,
5 Using the fact that H is a commuting set and induction on l along with the formula

[K ⊗ L, M ⊗ N ] = [K, M] ⊗ (L · N) + (M · K) ⊗ [L,N ],

it is easy to see that Hl is also a commuting set.

13
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where i, j, k = 0, 1, refers to an orthonormal basis {|0〉, |1〉} of the Hilbert space of each of
three two level systems. Xsw is the cyclic left shift operator acting on three qubits. The matrix
representation of this operator is given by

Xsw =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Our goal is to factorize Xsw in terms of elementary matrices. Using the Cartan decomposition
of the previous section (cf example 4.1), one can construct a grading and therefore obtain
a recursive decomposition of u(8). Modulo isomorphisms, the sequences characterizing the
recursive decomposition are given by

S0 = {sp(4), u(4), so(4), u(2), sp(1), u(1)}, (23)

S1 = {sp(4)⊥, u(4)⊥, so(4)⊥, u(2)⊥, sp(1)⊥, u(1)⊥}. (24)

Most of the algorithms for the computation of decompositions of the unitary group are given
in standard coordinates. To transform the problem into standard coordinates, one uses an
orthogonal change of basis. According to [1] the associated matrix is given by

F = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 −1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix is referred to as the finagler. After this change of coordinates, Xsw takes the form
X̃sw = FT XswF , with X̃sw = 12 ⊗ X′

sw where

X′
sw =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ .

To perform the decomposition, we follow the sequence of subspaces in (23) and (24). The first
step is to compute the decomposition of X̃sw induced by the Cartan pair (sp(4), sp(4)⊥) of
u(8). It can be verified that X̃sw is symplectic, i.e., X̃sw ∈ Sp(4), therefore its decomposition is
trivial. Moreover, X̃sw is contained in the image of U(4) embedded into Sp(4)6 and represented
by X′

sw in U(4). Indeed, X′
sw is not only unitary but orthogonal, i.e., X′

sw ∈ SO(4). Hence the
decompositions induced by the Cartan pairs (u(4), u(4)⊥), and (so(4), so(4)⊥) are also trivial.
The computational problem is now to find the decomposition X′

sw = K ′
1A

′K ′
2 induced by the

6 An embedding of U(n) into Sp(n) or SO(2n) is given by the map U + iV �→ (
U V
−V U

)
where U and V are real

matrices.
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Cartan pair (u(2), u(2)⊥) so that K ′
1 and K ′

2 are contained in the image of U(2) embedding
into SO(4), and A′ is the exponential of an element of the suitable Cartan subalgebra, i.e.,
A′ = diag(E,E−1). Let us partition X′

sw into 2 × 2 blocks, i.e.,

X′
sw =

(
X11 X12

X21 X22

)
.

Choose K ′
2 = 14. Then X′

sw decomposes as

X′
sw =

(
A B

−B A

) (
E 0
0 E−1

)
, (25)

where A + iB ∈ U(2). This equation is equivalent to two matrix equations

X11 − iX21 = (A + iB)E, X22 + iX12 = (A + iB)E−1,

which implies that

E2 = (X22 + iX12)
−1(X11 − iX21) =

(
0 −1
1 0

)
.

Once E is determined from the last equation, we obtain A and B using (25) so that

K ′
1 = 1√

2

⎛
⎜⎜⎝

1 1 0 0
0 0 1 −1
0 0 1 1

−1 1 0 0

⎞
⎟⎟⎠ , A′ = 1√

2

⎛
⎜⎜⎝

1 −1 0 0
1 1 0 0
0 0 1 1
0 0 −1 1

⎞
⎟⎟⎠ . (26)

In the next step, we decompose K ′
1 using the Cartan pairs (sp(1), sp(1)⊥) and (u(1), u(1)⊥).

As a final result, we obtain

X̃sw = L̃1L̃2L̃3L̃4, (27)

where

L̃1 = 1√
2
(18 − i12 ⊗ σy ⊗ 12), L̃2 = 1√

2
(18 + i12 ⊗ σy ⊗ σz),

L̃3 = 1√
2
(18 + i14 ⊗ σy), L̃4 = 12 ⊗ A′,

where A′ is defined in (26). We map X̃sw in (27) back to the tensor product basis to write

Xsw = L1L2L3L4, (28)

where Lk = FL̃kF
T , 1 � k � 4, where F is the finagler defined in (25). Finally, we write all

the factors in (28) as exponentials of matrices in the tensor product basis to obtain

Xsw = e
−iπ

4 σy⊗σz⊗σx e
iπ
4 σx⊗σz⊗σy e

iπ
4 σy⊗σx⊗σz e

−iπ
4 σx⊗σy⊗σz . (29)

For the sake of comparison, we factorize Xsw using the decomposition of Khaneja and
Glaser [7]. We have shown that this factorization corresponds to the sequences

S0 = {L0,L02 ,L03 ,L04 ,L05}, S1 = {L1,L01,L021,L031,L041}
(cf the elements of S0 and S1 in subsection 4.1 with N = 3). Recall that L0 =
span{1 ⊗ A, σz ⊗ B | A ∈ su(4), B ∈ u(4)}. We find it convenient to choose the Cartan
subalgebra as the span of matrices of type σx ⊗D with D diagonal for the Cartan pair (L0,L1)

of u(8). Therefore the corresponding decomposition of Xsw is given by

Xsw = K1AK2, (30)

where Kj = diag(Kj1,Kj2), with Kjk, 1 � j, k � 2, 4 × 4 unitary and A = (
D1 D2

D2 D1

)
where

Dj is diagonal with D2
1 − D2

2 = 14. Following the procedure described in [3] (section 8.2.3),
we obtain the matrices

15
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K11 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 −1 0 0
0 0 −1 0

⎞
⎟⎟⎠ , K12 =

⎛
⎜⎜⎝

0 1 0 0
0 0 −1 0

−1 0 0 0
0 0 0 1

⎞
⎟⎟⎠ , K21 =

⎛
⎜⎜⎝

1 0 0 0
0 −i 0 0
0 0 0 −i

0 0 1 0

⎞
⎟⎟⎠ ,

K22 =

⎛
⎜⎜⎝

0 −1 0 0
i 0 0 0
0 0 −i 0
0 0 0 1

⎞
⎟⎟⎠ , D1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ , D2 =

⎛
⎜⎜⎝

0 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 0

⎞
⎟⎟⎠ .

The next step is to factorize both K1 and K2 using the Cartan pair (L02 ,L01). Note that L2
0 is

given by 1 ⊗ su(4). Choosing the Cartan subalgebra as the span of matrices of type σz ⊗ D,
with diagonal D, induces the decomposition(

Kj1 0
0 Kj2

)
=

(
Lj1 0
0 Lj1

) (
Aj 0
0 A−1

j

) (
Lj2 0
0 Lj2

)
(31)

where Lj1, Lj2 ∈ SU(4) and Aj is diagonal. In order to achieve this decomposition, we set(
Kj1 0

0 Kj2

)
=

(
K 0
0 K

) (
P 0
0 P †

)

with unitary K and P to obtain two matrix equations Kj1 = KP and Kj2 = KP †. Then it
follows that P 2 = K

†
j2Kj1. We diagonalize P 2 with a unitary matrix U to write P 2 = U�U †,

and we choose D = �
1
2 with det(D) = 1 so that P = UDU †. Once P is determined, K can

be found from the matrix equation Kj2 = KP †. Finally we choose Lj1 = KU,Lj2 = U †

and Aj = D to obtain the desired decomposition (31).
Applying this procedure, we obtain

L11 = 1√
2

⎛
⎜⎜⎝

i 0 0 1
0 −i 1 0
i 0 0 −1
0 i 1 0

⎞
⎟⎟⎠ , L12 = 1√

2

⎛
⎜⎜⎝

−1 1 0 0
0 0 −1 −1
0 0 −1 1
1 1 0 0

⎞
⎟⎟⎠ ,

L21 = 1√
2

⎛
⎜⎜⎝

i 0 0 −1
1 0 0 −i
0 1 −i 0
0 −i 1 0

⎞
⎟⎟⎠ , L22 = 1√

2

⎛
⎜⎜⎝

−1 −1 0 0
0 0 −1 1
0 0 1 1

−1 1 0 0

⎞
⎟⎟⎠ ,

and

A1 = A2 =

⎛
⎜⎜⎝

i 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Similarly, we repeat the first two steps with the respective Cartan pairs (L03 ,L021) and
(L04 ,L031) to decompose Ljk , with 1 � j, k � 2. Finally, writing all the factors as
exponentials, we obtain the factorization

Xsw = K1AK2, (32)
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with

K1 = e
iπ
4 14⊗σz e

iπ
4 1⊗σz⊗σz e

iπ
4 1⊗σx⊗1 e

−iπ
4 14⊗σy e

iπ
4 14⊗σx e

iπ
4 1⊗σz⊗σz e

−iπ
4 14⊗σx e

iπ
4 σz⊗1⊗σz

× e
iπ
4 σz⊗σz⊗σz e

iπ
4 1⊗σx⊗1 e

−iπ
4 1⊗σx⊗σz e

iπ
4 1⊗σz⊗1 e

−iπ
4 1⊗σz⊗σz e

3iπ
4 14⊗σy ,

A = e
iπ
4 σx⊗σz⊗1 e

−iπ
4 σx⊗1⊗σz ,

K2 = e
iπ
2 14⊗σy e

−iπ
4 1⊗σz⊗1 e

iπ
4 1⊗σz⊗σz e

3iπ
4 14⊗σy e

iπ
4 1⊗σx⊗1 e

−iπ
4 1⊗σx⊗σz e

iπ
4 σz⊗1⊗σz e

iπ
4 σz⊗σz⊗σz

× e
iπ
2 14⊗σz e

iπ
2 1⊗σz⊗σz e

iπ
4 1⊗σx⊗1 e

−iπ
4 1⊗σx⊗σz e

iπ
2 14⊗σy e

−iπ
4 1⊗σz⊗1 e

−iπ
4 1⊗σz⊗σz e

−iπ
4 14⊗σy ,

where we used 1 to denote 12.

6. Conclusions

Grading of a Lie algebra, Cartan decompositions and recursive decompositions of a Lie group
are interrelated ideas. From a set of p Cartan decompositions, one can naturally obtain a Z

p

2 -
grading of a Lie algebra and a recursive decomposition of the associated Lie group. Known
procedures for the recursive decomposition of the unitary group of quantum evolutions are
special cases of this general scheme. When dealing with multipartite quantum systems, it is
convenient if the decompositions used in the procedure are given in terms of tensor products
of basis elements of the Lie algebras associated with the single subsystems. This is the case
for the CCD decomposition on N qubits and the OED decomposition in its various forms. In
this way, the factors of each element of the group are exponentials of tensor products, and one
can identify local operations as well as multi-body interactions.

We have given a new recursive decomposition applying the general procedure, along with
an example of computation (section 5). For this example, formulae (29) and (32), which
are obtained applying the results of [7], give different decompositions. In general, different
recursive decompositions of u(n) will result in different factorizations of U(n). The framework
presented here gives a virtually unbounded number of alternatives to decompose U(n) and
parametrize quantum evolutions. This framework is very general but uses only one type of
decompositions of Lie groups, the Cartan decompositions. It is possible that different types of
decompositions such as Bruhat and Iwasawa [16] could be used to obtain different schemes.
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